Error loading page.
Try refreshing the page. If that doesn't work, there may be a network issue, and you can use our self test page to see what's preventing the page from loading.
Learn more about possible network issues or contact support for more help.

Vital Question

Energy, Evolution, and the Origins of Complex Life

ebook
1 of 1 copy available
1 of 1 copy available

"One of the deepest, most illuminating books about the history of life to have been published in recent years." —The Economist

The Earth teems with life: in its oceans, forests, skies and cities. Yet there's a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.

For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?

The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane's hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.

Both rigorous and enchanting, The Vital Question provides a solution to life's vital question: why are we as we are, and indeed, why are we here at all?

  • Creators

  • Publisher

  • Release date

  • Formats

  • Languages

  • Reviews

    • Publisher's Weekly

      Starred review from July 6, 2015
      English biochemist Lane, whose previous book, Life Ascending, won the 2010 Royal Society Prize for Science Books, combines elegant prose and an enthusiasm for big questions as he attempts to peer into a "black hole at the heart of biology." Scientists "have no idea why cells work the way they do," nor "how the parts evolved," though as Lane points out, eukaryotic cellsâthe building blocks of all multicellular lifeâshare multiple complex structural and functional features. With impeccable logic and current research data, he makes a case for a common ancestor of all multicellular lifeâone created by a singular endosymbiotic event between a bacterial cell and an archaon cell that became the cell-powering mitochondrion. Lane walks readers through the details of how bacteria alone could have become metabolically diverse but not structurally complex. He then shows how the addition of mitochondria to the equation allowed a shift in energy flow through the cell, and how the migration of DNA introns from mitochondria DNA to the cell nucleus provided a wealth of new genetic material on which evolution could operate. The science is both a puzzle and a dance; Lane retains a sense of wonder as he embraces a bold hypothesis and delights in the hard data that gives it weight.

    • Kirkus

      April 15, 2015
      An evolutionary biochemist argues that while single-cell life emerged early in Earth's 4-billion-year history, complex life arose only some 2 billion years ago as the result of a rare, even freakish, event. Lane (Evolutionary Biology/Univ. Coll. London; Life Ascending: The Ten Great Inventions of Evolution, 2009) is known as a writer of popular science, but this is a rigorous work that requires close reading and the ability-and willingness-to tackle and comprehend complex technical processes, such as chemiosmotic coupling and the ATP synthase. The rare event was an endosymbiosis between two single-cell prokaryotes, forming a eukaryote, a complex cell. When this happened, mitochondria formed from the cell that was captured inside the host cell and continued to live in the new organism. The acquisition of mitochondria changed everything, greatly expanding the cell's genome and volume. Mitochondria contain genes in their DNA that differ from the genes in the cell nucleus and that mutate much faster than those in the nucleus. This high mutation rate lies behind our aging and certain congenital diseases such as cancer. Mitochondria may even have given rise to sex, which is necessary to maintain the function of genes in large genomes. To aid readers, Lane includes line drawings, diagrams, and black-and-white photographs, many with lengthy captions that also require close attention. A helpful glossary provides definitions of technical terms. The author writes with enthusiasm, generously gives credit to other scientists in his field, and freely acknowledges that some of his ideas may be wrong. Curiously, an epilogue reports that in 2010, Japanese scientists found an organism next to a hydrothermal vent in the Pacific Ocean that suggests that perhaps that rare event of 2 billion years ago recently happened once again. Not necessarily for casual readers, but for the scientifically curious, a challenging book that presents ideas about the most intricate processes that link genes and energy.

      COPYRIGHT(2015) Kirkus Reviews, ALL RIGHTS RESERVED.

    • Library Journal

      Starred review from June 1, 2015

      Celebrated evolutionary biologist Lane (Life Ascending) outlines what he hopes are the "beginnings of a more predictive biology" that may make it "possible to predict the properties of life anywhere in the universe from the chemical composition of the cosmos." Lane eloquently argues that complex eukaryotic life, as wildly disparate as it seems, is stunningly uniform at base, deriving from a single event in which one bacterium entered another and overcame the constraints that held back other such organisms. This singular endosymbiotic occasion, most evident to us today via our cells' mitochondria (which were once free-floating bacteria), triggered an astonishing series of previously impossible evolutionary actions resulting in billions of animal and plant species that yet share a method of conserving energy: chemiosmosis, or the transfer of protons across a membrane. And according to Lane, "Evolution should continue to play out along similar lines, guided by similar constants, elsewhere in the universe." VERDICT Novel and complex ideas, vibrant prose, and the author's careful repetition of central themes, make this book accessible to scientists and science buffs alike.--Cynthia Fox, Brooklyn

      Copyright 2015 Library Journal, LLC Used with permission.

Formats

  • Kindle Book
  • OverDrive Read
  • EPUB ebook

subjects

Languages

  • English

Loading